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We describe a method for calculating the counting statistics of electronic transport through nanoscale de-
vices with both sequential and cotunneling contributions. The method is based upon a perturbative expansion
of the von Neumann equation in Liouvillian space, with current cumulants calculated from the resulting
non-Markovian master equation without further approximation. As application, we consider transport through
a single quantum dot and discuss the effects of cotunneling on noise and skewness, as well as the properties of
various approximation schemes.
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Cotunneling, the transfer of electrons via intermediate
“virtual” states, can be an important mechanism in the trans-
port of electrons through quantum dots �QDs�.1,2 In the
Coulomb-blockade �CB� regime, sequential tunneling pro-
cesses are exponentially suppressed and, since it only suffers
an algebraic suppression, cotunneling becomes the dominant
current-carrying mechanism. Experimental interest in cotun-
neling has remained high from the earliest experiments on
metallic grains3 and large quantum dots,4 through to more
modern experiments on few-electron single5–7 and double8,9

quantum dots.
From a theoretical perspective, cotunneling refers to pro-

cesses fourth order in the coupling between the system and
the leads, an order which also includes, e.g., the pair tunnel-
ing of electrons.10 Such processes can be taken into account
in a number of different ways, see for example Refs. 2 and
11–17. Most relevant here is the real-time diagrammatic
approach14–17 in which higher-order tunneling processes are
incorporated into a master equation in a systematic fashion.
This theory has been extensively developed and successfully
applied to numerous transport problems: not just single QDs
but also double dots,18 quantum dot spin valves,19 carbon
nanotubes,20 and QD interferometers.21 While such higher-
order calculations have typically been restricted to the sta-
tionary current, and more recently, the shot noise,16,17 much
interest presently surrounds the full counting statistics �FCS�
of the current, i.e., in current correlations beyond the second-
order shot noise.22–24 The last few years has seen the advent
of experiments capable of detecting the passage of single
electrons through QD systems25–29 and the experimental de-
termination of FCS. Recently, measurements of the 15th cu-
mulant were reported for a single quantum dot.29

In this paper we bring together several strands in the lit-
erature to investigate the influence of cotunneling on FCS.
We derive a fourth-order master equation for the reduced
density matrix of an arbitrary mesoscopic system using the
Liouvillian-space perturbation theory of Refs. 30 and 31. We
then extend this formalism by showing how counting fields
may be added to the reservoir correlation functions. With
these in place, the FCS can be calculated and, given that the
master equation derived in this approach is non-Markovian,
we employ the formalism of Flindt et al.32 to obtain expres-
sions for the current cumulants.

We use this formalism to investigate the transport through
a single QD. We study first the single resonant level �SRL�

model. Exact solutions exist for this model and this allows an
evaluation of various approximation schemes. We then study
the effects of interaction on transport through the QD by
considering an Anderson model. Of the higher-order cumu-
lants, we focus on the skewness as the first correlator beyond
the shot noise. We compare, both on a formal and a numeri-
cal level, with the work of Braggio et al.,33 and with the shot
noise results of Thielmann et al.17

This paper is structured as follows: in Sec. I we introduce
a general transport model and in Sec. II, Liouville-Laplace
space. These sections also serve to fix the notation for Sec.
III in which we review the derivation of a quantum master
equation with sequential and cotunneling kernels in the Li-
ouvillian perturbation approach as presented in Refs. 30 and
31. Further technical details to be found in Appendix A. In
Sec. IV, we show how counting fields can be incorporated in
the Liouvillian perturbation theory and discuss how current
cumulants can be calculated from the resulting counting-
field-dependent Liouvillian. Section V sees application to our
model QD systems and is followed by conclusions.

I. TRANSPORT MODEL

We begin by specifying the general transport setup under
consideration here. The total Hamiltonian H=Hres+HS+V is
composed of reservoir, system, and interaction parts. We
write the system part in its diagonal basis HS=�aEa�a��a�,
where �a� is a many-body system state of Na electrons. We
consider a set of reservoirs labeled with an index � that
includes spin and any other relevant quantum numbers. We
assume noninteracting reservoirs with Hamiltonian

Hres = �
k,�

��k� + ���ak�
† ak�, �1�

where �k� is the energy of the kth mode in lead �, ak� is a
lead annihilation operator, and we have included the chemi-
cal potential of lead �, ��, at this point for convenience.

To ease book keeping, we introduce a compact single in-
dex “1” to denote the triple of indices ��1 ,k1 ,�1�.31 The first
index �1=� indicates whether a reservoir operator is a cre-
ation or annihilation operator
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a1 = a�1k1�1
=�ak1�1

† , �1 = +

ak1�1
, �1 = −

� . �2�

Leaving sums implicit, the reservoir Hamiltonian reads

Hres = ��k� + ���a+k�a−k� = ��1 + �1�a1a1̄��1,+, �3�

where 1̄ denotes �−�1 , k1 , �1�. In equilibrium, the reservoir
electrons are distributed according to the Fermi function

f��� =
1

e�/kBT + 1
, �4�

which, since we include the chemical potential in Eq. �1� and
assume a uniform temperature, is the same for all reservoirs.

Single-electron tunneling between system and reservoirs
is described by the Hamiltonian

V = �
k�m

tk�mak�
† dm + tk�m

� dm
† ak�, �5�

where dm is the annihilation operator for single-particle level
m in the system and tk�m is a tunneling amplitude. We write
this interaction as

V = �1t1ma1j�1m, �6�

with coefficients t+k�m= tk�m and t−k�m= tk�m
� , and system op-

erators in the many-body system basis

j+m = �
aa�

�a�dm�a����Na − Na� + 1��a��a�� ,

j−m = �
aa�

�a�dm
† �a����Na − Na� − 1��a��a�� . �7�

We have made explicit here the change in system charge
induced by the operator. Although these operators only de-
pend on �1, we label them with the full 1 index for conve-
nience: j1m= j�1m.

At time t=0 we posit a separable total density matrix

��t = 0� = �S�0��res
eq , �8�

with the system in arbitrary state �S�t0� and reservoirs in
thermal equilibrium.

II. LIOUVILLE-LAPLACE SPACE

We now construct the elements required to perform our
perturbation calculation in Liouville-Laplace space. In this
section and the next, we follow Refs. 30, 31, and 34 to which
the reader is referred for further details. The total density
matrix evolves according to the von Neumann equation

�̇�t� = − i	H,��t�
 = L��t� , �9�

which defines the Liouvillian superoperator L=−i	H , •
. This
Liouvillian consists of three parts,

L = Lres + LS + LV �10�

with Lres=−i	Hres , •
, LS=−i	HS , •
, and LV=−i	V , •
. We
write the interaction Liouvillian as

LV = − i�1t1m�
p

A1
pJ1m

p , �11�

where p=� is a Keldysh index corresponding to the two
parts of the commutator. Superoperators A and J are defined
through their actions on arbitrary operator O: for the reser-
voir, we have

A1
pO = �a1O , p = +

Oa1, p = −
� , �12�

and analogously for the system

J1m
p O = � j1mO , p = +

Oj1m, p = −
� . �13�

By organizing the elements of density matrices into vectors,
superoperators such as the Liouvillian take the form of ma-
trices. This is a particularly convenient representation for the
system Liouvillian. We write a general system density ma-
trix, �S=�a1a2

�a1a2
�a1��a2�, as the vector ���S��=�a�a���a��,

where the single index a corresponds to the double �a1 ,a2�,
such that the “ket” ���a�� corresponds to �a1��a2�. The action
of the free system Liouvillian LS on vector ���a�� is

LS���a�� � − i	HS, �a1��a2�
 = − i	a���a�� , �14�

where 	a�Ea1
−Ea2

defines the Bohr frequencies. The vec-
tors ���a�� are therefore the right eigenvectors of Liouvillian
LS. The left eigenvectors, ���a��, fulfill

���a��LS = − i	a���a�� �15�

and together with the right eigenvectors form a biorthonor-
mal set: ���a ��a���=�a,a�. We have the closure relation in
Liouvillian space35

1 = �
a

���a�����a�� . �16�

In general, it is important to make the distinction between
left and right eigenvectors because an arbitrary superopera-
tor, in particular, the effective system Liouvillian, will not be
Hermitian, and the left and right eigenvectors are therefore
not adjoint.

III. EFFECTIVE LIOUVILLIAN

With the definition of the Laplace transform

��z� � �
0




dte−zt��t� , �17�

Eq. �9� yields the solution

��z� =
1

z − L
��0� . �18�

Tracing Eq. �18� over reservoir degrees of freedom results in
an expression for the reduced density matrix of the system
that we write
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�S�z� =
1

z − W�z�
�S�0� , �19�

where W�z� is the non-Markovian effective dot Liouvillian.
This we write as

W�z� = LS + ��z� , �20�

with LS describing the free evolution of the system and ��z�
the self-energy or “memory kernel” arising from coupling
with the leads.

In the perturbative approach pursued here, the memory
kernel is calculated as the series ��z�=�n��n��z�, where n
corresponds to the number of interaction Liouvillians LV in-
corporated in that term. Tunneling is governed by the rates

��1�1

m2m1��� � 2
�
k1

t1̄m2
t1m1

��� − �k1�1
� , �21�

the diagonal elements of which are the familiar Fermi golden
rule rates

��1�1

m1m1��� � 2
�
k1

�t1m1
�2��� − �k1�1

� . �22�

In these terms, the expansion of ��z� is seen as an expansion
in the rates �, such that ��n��z� is order �n/2. In the current
work, we expand up to fourth order in the coupling Hamil-
tonian �second order in ��, such that

��z� 
 ��2��z� + ��4��z� . �23�

The first term describes sequential tunneling and the second
cotunneling.

Details of the calculation of the memory kernel terms are
given in Appendix A. Assuming a constant tunneling density
of states ����=�, the sequential term reads

��2��z� = J2m2

p2
− p2

z − i�2��2 + �2� − LS
J1m1

p1 t2m2
t1m1

�21
p2p1,

�24�

where �21
p2p1 = �A2

p2A1
p1�eq is an equilibrium reservoir correla-

tion function which evaluates as

�21
p2p1 = �21̄p1f�− �1p1�1� . �25�

As described in Appendix A, switching to an integral repre-
sentation for the lead states and regularizing by setting z
=0+− i�, we obtain

��2��z� = − p1p2J
1̄m2

p2 ���a�����a��J1m1

p1

���1�1

m2m1Ip1

�2��	a + �1��1
− �� ,

where the sequential integral evaluates as

Ip
�2���� =

1

2
f�p�� +

ip

2

����

with

���� =
1

2
�g��� + g�− ��� − ln

XC

2
kBT
,

g��� = ��1

2
+

�

2
ikBT
� �26�

with �, the digamma function and XC a high-energy cutoff
	see Eq. �A18�
.

The cotunneling term has two contributions: “direct” and
“exchange,” such that ��4��z�=��4D��z�+��4X��z�. The direct
part is given by

��4D��z� = p4p1J
1̄m4

p4 ���a�����a��J
2̄m3

p3 ���a���

����a���J2m2

p2 ���a������a���J1m1

p1

���1�1

m4m1��2�2

m3m2Ip1p2

D ��1
a�,�2

a�,�3
a� �27�

and the exchange by

��4X��z� = − p4p1J
2̄m4

p4 ���a�����a��J
1̄m3

p3 ���a���

����a���J2m2

p2 ���a������a���J1m1

p1

���1�1

m3m1��2�2

m4m2Ip1p2

X ��1
a�,�2

a�,�3
a� . �28�

The fourth-order integrals ID and IX and their functional de-
pendencies are discussed in Appendix A.

IV. COUNTING STATISTICS

The density matrix of Eq. �19� is the Laplace transform of
the solution to the non-Markovian master equation36

�̇S�t� = �
0

t

dt�W�t − t����t�� , �29�

from which we wish to calculate the FCS. The most conve-
nient way to do this is through the introduction of so-called
counting fields ��, which are associated with processes that
transfer electrons to and from leads.24 In simple situations
�e.g., infinite bias limit,37 phenomenological models38�, it is
relatively straightforward to add counting fields to the rel-
evant master equation. The various derivatives of the result-
ing “�-resolved” Liouvillian W�� ,z� can then be used to
calculate the �zero-frequency� current cumulants as we
discuss below.

We are thus led to the central question of the formal part
of this work: how can one add counting fields to the complex
kernels arising from the Liouvillian perturbation theory?
This is clearly not trivial since, at nth order each term in the
Liouvillian can transfer a total of up to n electrons to and
from the various reservoirs. Furthermore, there is also the
issue of how the counting fields should enter elements of the
Liouvillian that concern changes in internal coherences of
the system. Within the real-time diagrammatic approach, this
question is answered by introducing counting fields into the
tunnel Hamiltonian of Eq. �5�, which then accrue different
signs depending on the Keldysh branch on which they act.33

We assert here that the correct assignment of counting
fields can also be obtained within the Liouvillian perturba-
tion scheme by replacing each bath contraction �21

p2p1 in the
memory kernel ��z� by the counting-field-dependent analog
�21

p2p1���, which we define as
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�21
p2p1��� = �21

p2p1 exp�is�1
�1� p1 − p2

2
���1

� �30�

with s�= �1 a factor given by the sign convention for cur-
rent flow in lead �. To see that �21

p2p1��� adds counting fields
at the correct points, let us consider an example with −�2
=�1=+. Then, for −p2= p1=+, the contraction �21

p2p1 is pro-
portional to trace of ak�

† �ak�, a state with one more electron
in lead � than � itself. This process should therefore be as-
sociated with counting-field factor, eis���, which is as ob-
tained from Eq. �30�. On the other hand, for p2= p1=+, the
contraction is proportional to the trace of ak�

† ak��, a state
with the same number of electrons as �. This term should
therefore obtain no counting field, and this is what is re-
turned by Eq. �30�. In this way, and through comparison with
previous calculations,17,33 it can be seen that Eq. �30� assigns
the counting fields correctly. The addition of counting fields
through Eq. �30� is simpler than determining the correspond-
ing counting-field-dependent real-time diagrams and can eas-
ily be extended to higher orders. In the following we will
only count electrons in a single lead, for which we choose
s�=1.

Once in possession of the �-resolved Liouvillian, the cu-
mulant generating function �CGF� F���=−tz0��� is obtained
from the solution z0��� of the equation

z0 − �0��;z0� = 0, �31�

where �0�� ;z0� is the eigenvalue of W�� ;z� that develops
adiabatically from zero as � is increased from zero.39 In the
Markovian case, �0 is independent of z and the CGF is sim-
ply F���=−t�0���. The non-Markovian case is less straight-
forward, however. We follow here the approach of Ref. 32,
which uses Eq. �31� to derive expressions for the cumulants
themselves, bypassing an explicit evaluation of the CGF it-
self. This approach can deliver the cumulants up to, in prin-
ciple, arbitrary order ��20 in Ref. 40� and is applicable to
systems of large size, unlike methods that explicitly require
the eigenvalue �0�� ,z�.

We first define

J��,�� = W��,z = 0+ − i�� − W�� = 0,z = 0+� , �32�

along with the derivatives

J� = ��J��,�→0, J̇ = ��J��,�→0, �33�

and analogously for higher orders. We define the left and
right null vectors of W�0,0+� via

W�0,0+����0�� = ���0��W�0,0+� = 0, �34�

which we assume to be unique. The vector ���0�� corre-
sponds to the stationary density matrix of the system, and
multiplication with ���0��, corresponds to taking the trace
over system states.39 We define the stationary state “expecta-
tion value” �� • ��= ���0� • ��0�� and the projectors P
= ���0�����0�� and Q=1−P. Finally, we require the pseudoin-
verse

R��� = Q 1

i� + W�0,0+ − i��
Q . �35�

From Refs. 32 and 41, the first three current cumulants are

�I� = �I�c = �I�m �36�

S = �I�2
c = Sm + 2�I� ��J̇� − J�RJ̇�� , �37�

S�3� = �I�3
c = S�3m� −

3S

2�I�
�Sm − S�

− 3i�I���J̇� − 2J̇�RJ� − J�RJ̇��

+ 6i�I���J�R�RJ̇PJ� + J̇����

− 6i�I���J�R�J�RJ̇ + J̇RJ����

+ 3i�I�2��J̈� + 2J�RJ̇RJ̇��

− 3i�I�2��J�RJ̈ + 2J̇�RJ̇�� , �38�

where

i�I�m = ��J��� �39�

i2Sm = ��J� − 2J�RJ��� �40�

i3S�3m� = ��J� − 3J�RJ� − 3J�RJ���

− 6��J�R�RJ�P − J�R�J��� , �41�

are the cumulants in the Markov approximation. In these
expressions, it is understood that the pseudoinverse is evalu-
ated at �=0. Although it is only practicable to explicitly
write down the cumulants up to third order, the high-order
cumulants can be obtained recursively.32

Reference 33 took a different approach to calculating the
cumulants. There it was taken that W is known to a given
order in some small parameter and the CGF then calculated
to the same order. For problems such as considered here, this
means that the CGF, and hence all the cumulants, are calcu-
lated rigorously up to order �2. This is to be contrasted with
the above cumulants which, if expanded, have contributions
at all orders in � since the pseudoinverse Eq. �35� has terms
of order � �and �2� in the denominator. While the method of
Ref. 33 may naively seem more consistent, there are several
good reasons why the approach described here might be
preferable. First, from Ref. 42 we know that in the infinite
bias limit, the effective Liouvillian is given exactly by LS
plus the rate part of ��2���=0�. In order to recover the FCS
correctly in this limit then, no further approximations should
be made when calculating the cumulants. A good example is
the shot noise of double quantum dot, for which Eq. �40�
reproduces exactly the infinite bias results of,43 whereas the
approach of Ref. 33 would only provide an approximation. It
should be noted that this difference is only evident for mod-
els with internal quantum degrees of freedom. Second, Refs.
30, 44, and 45 make the point that, in certain circumstances,
by treating incoming and outgoing processes unequally, a
strict order-by-order approach can lead to unphysical results
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for the current. Finally, from a many-body perspective, it
seems more natural that once one has summed an infinite
class of diagrams to obtain the propagator � to leave it in
this linked form in subsequent expressions. In the next sec-
tion, we shall compare the results of these two methods for
the single QD models.

Before doing so, we note that comparing the foregoing
expressions for the current and the shot noise with those of,
e.g., Ref. 17, we can identify the derivatives of J with re-
spect to � and z with the various “current superoperator
blocks” of the real-time diagrammatic approach. For ex-
ample, differentiating J once with respect to i� and setting
�→0 yields a superoperator similar to W but with an addi-
tional forefactor �1�p1− p2� /2. Under the summation, the p2
contribution cancels, leaving a forefactor �1p1 /2. This fore-
factor is the same as arises in replacing a single tunnel vertex
with a current vertex in the self-energy, which is the recipe
for obtaining the current superoperator block used to calcu-
late the stationary current in the diagrammatic approach. Us-
ing a very different approach, we thus reproduce the real-
time current and shot-noise expressions. The advantage of
the present method is that it is now easy to obtain to the
higher cumulants, whereas with the diagrammatic approach,
this requires some effort.

V. TRANSPORT THROUGH A SINGLE QUANTUM DOT

We model the transport through a single Zeeman-split
level with the Anderson Hamiltonian46

H = �
�

��d�
†d� + Un↑n↓ + Hres + V , �42�

where �� is the energy of a spin-� electron in the dot and U
is the interaction energy. The reservoir and interaction
Hamiltonians are as Eqs. �1� and �5�, with index � including
both lead �=L ,R� and spin index. In the limit of large level
splitting we can address one and only one Zeeman level. We
then recover the SRL model, the transport properties of
which can be obtained exactly from scattering theory.47,48

The SRL thus provides a useful benchmark against which to
compare approximate methods.

We will discuss results obtained in several different ap-
proximate schemes. We denote as “O�4�” the results obtained
by calculating the cumulants as outlined in the previous sec-
tion with the fourth-order effective Liouvillian containing
both sequential and cotunneling terms. The second-order
“O�2�” solution is obtained in the same way but with sequen-
tial terms only. We also consider a scheme in which we ex-
pand the cumulants and truncate at fourth order. In this way
we recover the FCS results of Braggio et al.33 and the shot-
noise results of Thielmann et al.17 This approach we label as
“O�4� trunc.” Finally, we compare with results in the Mar-
kovian approximation, which we label with “Mark.”

We calculated results with and without the imaginary
parts of the fourth-order self-energy. For the models studied
here �no internal coherences�, these terms only contribute to
the non-Markovian terms and it was found that their influ-
ence on the results was negligible in all instances studied
here. In the results presented below, these parts of the self-

energy have been neglected as this considerably reduces the
computational effort.

A. Single resonant level

The calculation of the first three cumulants in the scatter-
ing approach is discussed in Appendix B. In the infinite bias
limit, we have49

�I� =
�L�R

�
, S = �I�

�L
2 + �R

2

�2 ,

S�3� =
�I�
�4 ��L

4 − 2�L
3�R + 6�L

2�R
2 − 2�L�R

3 + �R
4� ,

or, for symmetric rates ��L=�R�, �I�=�L /2, S=�L /4, and
S�3�=�L /8.

Figure 1 shows the current and shot noise as a function of

applied bias for different values of the coupling �̃=�L /kBT
=�R /kBT. A step occurs at a bias of eV
2� �=40kBT here� as

the level enters the transport window. For �̃�
1
4 agreement

between the our O�4� fourth-order calculation and the exact
result is excellent across the whole bias range. For greater

couplings, �̃�1 /2, deviation from the exact solution is seen
in the shot noise around the top of the step which signals the
start of the break down of our approach. The difference be-
tween the second-order Markovian and the exact solution is
stark. In the CB regime �eV�30 here� the sequential current
is almost totally suppressed but the cotunneling current is
still considerable. The O�2� Mark. solution also shows sig-
nificant error in the high-bias �eV�2�� regime, which arises
largely from the Markovian approximation.

0 20 40 60
0

0.1

0.2

0 20 40 60
0

0.2

0.4
exact
O(2) Mark.
O(4)

eΓ = 1

eΓ = 1/2

eΓ = 1/4

eV/kBT eV/kBT

eI eS

FIG. 1. �Color online� Stationary current Ĩ= �I� /kBT �left� and

zero-frequency shot noise S̃=S /kBT �right� as a function of applied
bias eV for the single resonant level model with level located at �
=20kBT, chemical potentials �L=−�R=eV /2, and bandwidth D

=103kBT. Results are shown for three different couplings: �̃

=�L /kBT=�R /kBT= 1
4 , 1

2 ,1 and three calculational schemes: exact,
full fourth-order 	O�4�
, and second-order Markovian 	O�2� Mark.

Whereas the O�2� Markovian results show obvious deviations from
the exact results for these couplings, the O�4� solution gives good

agreement except around the top of the shot-noise step for �̃=1.
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Figure 2 plots the skewness which, in contrast to the shot
noise, show a pronounced undulation at onset. The O�2�
Markovian solution provides only the coarsest description of
this behavior, whereas it is reproduced by the O�4� solution.

For �̃�
1
4 , the quantitative agreement with the exact result is

good. Nevertheless, for a given coupling, the error is larger
for skewness than for the noise. Figures 3 and 4 compare the

O�4� and O�4� trunc results at �̃=1 /2. We choose this value

to highlight the differences between the two solutions which,
for smaller couplings, are negligible.

Near the top of the step 	Figs. 3�a� and 4�a�
, the O�4� and
O�4� trunc solutions are noticeably different, with our O�4�
results significantly closer to the exact result. Deep in the CB
regime 	Fig. 3�b�
, the two approximate solutions differ once
more, but this time the O�4� trunc solution is more accurate.

The difference is small �a difference in S̃ of 2�10−5 near
zero bias�; it plays, however, a disproportionate role in de-
termining the Fano factors in the CB regime as Figs. 3�c� and
4�b� show. From the exact solution, we know that noise Fano
factor diverges at low bias �fluctuation dissipation theorem�,
whereas the skewness Fano factor F�n��S�n� / �I� tends to
unity. In this regime, both Fano factors are reproduced better
by the O�4� trunc solution than by solution O�4�.

Figure 5 show the nth-order Fano factors up to and in-
cluding n=7. Below resonance �e.g., eV /kBT=30 in Fig. 5�,
the O�4� solution predicts superPoissonian cumulants, with
magnitude increasing with increasing order n. This is clearly
incorrect behavior as the SRL is a noninteracting model for
which we expect sub-Poissonian statistics. In this regime the
O�4� trunc solution remains sub-Poissonian and thus pro-
vides a better description. At or above resonance, both solu-
tions predict sub-Poissonian behavior, with differences ap-
pearing between the two solutions which increase with the
order of the cumulant. As the 15th cumulant has recently
been measured,29 it is, in principle, possible to test the dif-
ferences in the predictions of these calculational schemes.

B. Anderson model

The current, shot noise, and Fano factor of the Anderson
model with cotunneling were investigated in Ref. 17, and, as
Fig. 6 shows, the present calculation broadly reproduces
these results. The situation in which the lower dot level lies
below the transport window is of particular interest. As ob-
served in Ref. 17, increasing the applied bias results in a
large peak in the Fano factor around the point where the
upper dot level enters the transport window. The peak exists
in the sequential tunnel limit, but its height, width, and loca-
tion are markedly altered by inelastic cotunneling processes.
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eV/kBT

eS(3)

FIG. 2. �Color online� Zero-frequency skewness S̃�3�=S�3� /kBT
of SRL with the same parameters as in Fig. 1. For a given coupling,
agreement with the exact solution is worse than for shot noise, but

still good at low couplings �e.g., �̃=1 /4�.
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FIG. 3. �Color online� Zero-frequency shot noise �left panels�
and Fano factor F=S / �I� �right panel� of SRL as a function of

applied bias eV. The tunnel rate is fixed at �̃=1 /2 here but other-
wise the parameters are as Fig. 1. In addition to the approximation
schemes discussed in Fig. 1, results are also shown here from a
rigorous expansion of the cumulants to fourth order 	O�4� trunc
.
Around the current step 	panel �a�
, the full O�4� solution describes
the behavior better than O�4� trunc. However, in the low bias,
Coulomb-blockade regime 	panel �b�
, it is the O�4� trunc solution
that matches the exact solution better. Panel �c� illustrates the dan-
gers of considering the Fano factor alone: although O�4� trunc re-
produces the exact Fano factor extremely well in the Coulomb-
blockade regime, so does the O�2� Markovian solution, which we
know gives the current and shot noise individually extremely
poorly.

20 30 40 50
0

0.02

0.04

0.06

0 20 40 60

0.25

0.5

0.75

1

exact
O(4)
O(4) trunc
O(2) Mark

eV/kBTeV/kBT

eS(3) F (3)

eΓ = 1/2

FIG. 4. �Color online� Zero-frequency skewness �left� and asso-
ciated Fano factor F�3�=S�3� / �I� �right� of the SRL model as a func-
tion of applied bias eV. Same parameters and labels as Fig. 3. Once
again, the O�4� solution performs better in the onset region.
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No peak occurs in the shot noise itself; only in the Fano
factor is this feature visible.

Figure 7 shows our results for the skewness in this situa-
tion. It is immediately clear that the skewness Fano factor
also shows a peak and that this is even more pronounced
than that of the noise. Furthermore, the skewness itself ex-
hibits a sharp peak, as inset Fig. 7�b� shows. As with the shot
noise, the presence of cotunneling significantly reduces the
height and overall area of the peak in the skewness Fano

factor. This superPoissonian behavior indicates a signifi-
cantly bunched electron flow, which can nicely be explained
with the dynamical channel blockade model of Refs. 50 and
51, in which a single level �here, the lower� is but weakly
coupled to the collector. In the simple sequential picture of
Ref. 51, the shot noise and skewness Fano factors are pre-
dicted to be F2= �1+ p� / �1− p� and F3= �1+4p+ p2� / �1− p�2,
where 1 / p is parameter corresponding to the number of ways
in which the dot can be filled. With p=1 /3 �corresponding to
three ways of filling the dot: from the left and right into the
lower level, and from the left only into the upper level�, we
obtain F2=2 and F3=11 /2, which are almost exactly the
values obtained by our sequential O�2� results at the tops of
the peaks. Cotunneling reduces the heights of peaks, and
good agreement with the dynamical channel blockade model
can be obtained with the choice p=0.272.

Both noise and skewness figures show results for O�4�
and O�4� trunc solutions. At high bias, these solutions agree
closely with one another and both predict the same position
and widths of the Fano factor peaks. However, the heights of
the peaks are given differently in the two approaches with
the O�4� trunc peaks being somewhat higher. Differences
between the two solutions are most pronounced at low bias,
when the Coulomb blockade is in effect. For example, the
O�4� solution predicts a small sub-Poissonan dip before the
superPoissonian peak, which is absent in the O�4� trunc re-
sults. From our studies of the SRL model, we expect the O�4�
trunc prediction to be more accurate in this regime, and this
is borne out by the fact that the skewness Fano factor in the
O�4� calculation does not tend to unity with decreasing bias.
Conversely, based on the SRL results, we expect the height
of the Fano factor peaks to be better described by the O�4�
solution, i.e., the lower of the two values.

VI. CONCLUSIONS

We have described a method for calculating the counting
statistics of an arbitrary mesoscopic system taking into ac-
count both sequential tunneling and cotunneling of electrons.
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FIG. 5. �Color online� The nth-order Fano factors, F�n�

�S�n� / �I�, up to order n=7 for the single resonant level model with

parameters as in Fig. 1 and with �̃=1 /4. At low bias, the O�4�
solution predicts spurious superPoissonian cumulants, whereas the
O�4� trunc cumulants are sub-Poissonian. Around and above reso-
nance, both sets of results are sub-Poissonian with differences be-
tween the two results becoming more significant with increasing
order. Note that the O�4� and O�4� trunc results are virtually coin-
cident for eV /kBT=40.
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FIG. 6. �Color online� �b� Current, �c� noise, and �a� Fano factor
for the Anderson model as a function of applied bias eV. Parameters
were chosen as in Ref. 17: �L=�R= 1

4kBT, �L=−�R= 1
2eV, �↑=

−15kBT, �↓=5kBT, U=40kBT, and bandwidth D=103kBT. A promi-
nent peak is observed in the Fano factor around a bias such that the
transport window includes the upper level while the lower level is
still included. Cotunneling reduces the size of the peak.
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FIG. 7. �Color online� �b� Skewness and �a� skewness Fano
factor F�3� for the Anderson model with parameters and labeling as
Fig. 6. Not only the skewness Fano factor but the skewness itself
show a large peak as the top level enters the transport window.
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This method is based upon a perturbative expansion of the
von Neumann equation in Liouville-Laplace space. The key
element that we add to this formalism here is a prescription
for how counting fields can be included in the reservoir con-
tractions, such that we obtain a �-dependent kernel from
which all the current cumulants may be calculated. We be-
lieve that this Liouvillian approach is particularly convenient
and could, in principle, be extended to higher orders or other
computational schemes.

Once in possession of a �-dependent kernel, current cu-
mulants can be obtained, and we have discussed here two
different approaches: the pseudoinverse method advocated
here after the kernels have been derived in which no further
approximations are made and the approach of Ref. 33 in
which cumulants are calculated to order �2. From our study
of simple quantum-dot models we can draw some tentative
conclusions about the relative merits of these two ap-
proaches. For very small � or at high bias, the results are
very similar. For moderate �, the full pseudoinverse method
gives slightly better results around resonance, whereas, be-
low resonance, with the system in the CB regime, the trun-
cated scheme provides a more reliable description—and, in
particular, in the calculation of the Fano factors. It should be
borne in mind that, in obtaining the Fano factors in this
Coulomb-blockade regime, one is dividing one very small
quantity by another and therefore even small absolute errors
can effect Fano factors quite dramatically. By truncating rig-
orously at second order, cancellation between numerator and
denominator is far better than in the O�4� calculation, yield-
ing better Fano factors. As a warning, however, not to take
the finer details of the Fano factor too seriously, we observe
that the second-order Markovian solution in the CB regime
reproduces the exact Fano factors better than any of the
fourth-order results. This is deceptive since the individual
current and shot noise obtained with this method are vastly
different from the exact results.

As an example of the application of this formalism, we
have studied the shot noise, and, in particular, the skewness
of the current through an interacting single QD. We predict a
sharp peak in the skewness itself around the inelastic cotun-
neling conditions and have discussed an interpretation in
terms of dynamical channel blockade.

Future work includes the study of transport models with
internal quantum degrees of freedom, such as the double
quantum dot. It is anticipated that for such models, the ad-
vantages of the nontruncated FCS calculation will be more
evident.
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APPENDIX A: DERIVATION OF EFFECTIVE SYSTEM
LIOUVILLIAN

Following Refs. 30, 31, and 34 we start by defining the
system operators

gk� = �
m

tk�mjm, �A1�

such that the interaction Hamiltonian of Eq. �5� can be writ-
ten as V=�1a1g1. Correspondingly, in Liouville space we
have

LV = − i�1�
p

p�pA1
pG1

p �A2�

with A as before, and G defined via

G1
pO = �p� g1O , p = +

− Og1, p = −
� . �A3�

The object �p is a dot-space superoperator with matrix
elements31

��p�ss�,s̄s̄� = �ss̄�s�s̄��1, Ns − Ns� = even

p , Ns − Ns� = odd � , �A4�

where, Ns is the number of electrons in state s. Note that
G1

p= p�pt1mJ1m
p .

The reduced density matrix of the dot is given by tracing
out the electron reservoirs

�S�z� = TrR���z�� = TrR� 1

z − L
��0�� . �A5�

This we expand in powers of LV to obtain

�S�z� = TrR�	�0�z� + �0�z�LV�0�z� + ¯
��0�� �A6�

with free propagator �0�z�= 	z−Lres−LS
−1. With substitu-
tion of Eq. �A2�, a typical term of the expansion Eq. �A6�
reads

�− i�n��
l=1

n

�lpl�TrR��0�z��pnAn
pnGn

pn . . . �p1A1
p1G1

p1�0�z���0�� .

�A7�

Evaluating the action of the �p superoperators we obtain a
factor �l

oddpl and, as the G operators also contain �, they
evaluate at different positions in the chain as

Gl
plO = �pl�l+1�glO, pl = +

Ogl, pl = −
� , �A8�

or, in other words, Gl
pl→ �pl�l+1tlml

Jlml

pl . Our typical term then
looks like

�− i�n��
l

all

�lpl���
l�

odd

pl��
� TrR��0�z�An

pnGn
pn . . . A1

p1G1
p1�0�z���0�� , �A9�

and the next task is to separate dot and reservoir degrees of
freedom. For this we can use the dot-reservoir superoperator

commutation relation A1
pG1�

p�=−pp�G1�
p�A1

p. We will also need
the following relations: TrR Lres=0, Lres�res

eq =0, and A1
pLres

= �Lres−x1�A1
p with
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x1 = − i�1��1 + ��1
� . �A10�

The commutation of the dot operators through the free
propagators therefore changes the argument of the propaga-
tor

A1
p�0�z� = �0�z + x1�A1

p. �A11�

Bringing all the A operators to the right of the G operators
generates a factor which exactly cancels with the first prod-
uct in Eq. �A9�. Our term becomes

�− i�n��
l�

odd

pl��TrR��S�z�Gn
pn�S�zn−1�Gn−1

pn−1 . . .

�G2
p2�S�z1�G1

p1�S�z�An
pn . . . A1

p1��0�� �A12�

with free dot propagator

�S�z� =
1

z − LS
, �A13�

and zm=z+�l=m+1
n xl; 1�m�n−1.

The reservoir expectation values, Trres�An
pn . . .A1

p1�res
eq �

= �An
pn . . .A1

p1�eq, can be evaluated with the rules of Wick’s
theorem in Liouville space, which read:30 �1� decompose
� . . . �res into pair contractions, �2� add minus sign for each
interchange of A, �3� omit factor ��l�

oddpl�� arising from �

superoperators, and �4� each pair contraction then contributes
a factor

�A2
p2A1

p1� = �21
p2p1 = �21̄p1f�− �1p1�1� . �A14�

With these rules, our typical term becomes

�− i�n�S�zn�Gn
pn�S�zn−1�Gn−1

pn−1 . . . G2
p2�S�z1�G1

p1�S�z��S�t0�

� � �
decomps

�− 1�NP � �ij� , �A15�

where the last factor indicates a sum over all pair decompo-
sitions with the relevant Wick sign �−1�NP.

Comparison of this expression with Eqs. �19� and �20�
allows us to identify the self-energy as

��z� = �
n

even

�− i�n� �
irred.

�− 1�NP � �ij�
� Gn

pn�S�zn−1�Gn−1
pn−1 . . . G2

p2�S�z1�G1
p1,

where the sum is over irreducible contractions only.

1. Second order

At second order, there is only one contraction, and we
have

��2��z� = G2
p2

− 1

z + x2 − LS
G1

p1�21
p2p1

= G
1̄

p2 − p1f�− �1p1�1�
z + i�1��1 + ��1

� − LS
G1

p1

= − G
1̄

p2���a�����a��G1
p1

p1f�− �1p1�1�
z + i�1��1 + ��1

� + i	a
,

where a summation over a has been left implicit. Re-
expressing the G superoperators in terms of J superoperators
and tunnel amplitudes, we have

��2��z� = − p1p2J
1̄m2

p2 ���a�����a��J1m1

p1

� t1̄m2
t1m1

f�− �1p1�1�
z + i�1��1 + ��1

� + i	a
. �A16�

With rates defined as in Eq. �21� in the constant tunneling
density of states approximation, Eq. �A16� becomes

��2��z� = − p1p2J
1̄m2

p2 ���a�����a��J1m1

p1 ��1�1

m2m1Ip1

�2��z;	a,�1,�1� ,

�A17�

where we have converted the sum over lead degrees of free-
dom into the integral

Ip1

�2� =
1

2

� d�1

f�− �1p1�1�
z + i�1��1 + ��1

� + i	a
.

To evaluate this integral, we regularize it by setting z→0+

− i� with � wholly real. The self-energy then becomes

��2��z = 0+ − i��

= − p1p2J
1̄m2

p2 ���a�����a��J1m1

p1

� ��1�1

m2m1Ip1

�2��	a + �1�1 − ��

with

Ip
�2���� =

i

2

� d�1D�� − ��

f��1�
i0+ + p�1 − �

.

In this integral we have introduced the Lorentzian cutoff
function

D��� =
XC

2

�2 + XC
2 �A18�

with cutoff energy XC assumed much larger than all other
energy scales in the problem. This cutoff insures that indi-
vidual integrals remain finite. Contour integration yields

Ip
�2���� =

1

2
f�p�� +

ip

2

����

with the function
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���� =
1

2
	g��� + g�− �� − g�� + iXC� − g�− � + iXC�
 ,

in terms of the digamma function of Eq. �26�. In the limit of
large XC, we obtain the form given in Eq. �26�, correct to
order 1 /XC.

2. Fourth order

At fourth order, there are two linked contractions,
�41��32� and �42��31�, which we label “D” for direct and “X”
for exchange. The direct contribution reads

��4D��z� = G
1̄

p4�S�z3�G
2̄

p3�S�z2�G2
p2�S�z1�G1

p1�41
p4p1�32

p3p2.

�A19�

This evaluates as Eq. �27� with the integral

IP1P2

D ��1
a�,�2

a�,�3
a� =

1

�2
�2

− i

�3
a − �1

a�
� d�1� d�2

�
f�p1�1�f�p2�2�

�i0+ + �1 + �2 − �2
a���i0+ + �1 − �3

a�

+ ��1
a� ↔ �3

a� �A20�

with �1
a�=�1��1

+	a�−�, �2
a�=�1��1

+�2��2
+	a�−�, and �3

a

=�1��1
+	a−�. Note that here the ��1

a�↔�3
a� symbol in-

cludes the preintegral forefactor. Use of partial fraction de-
composition allows this integral to be written as

IP1P2

D ��1,�2,�3� =
− i

�2
�2

Ip1p2

�4� ��2,�3� − Ip1p2

�4� ��2,�1�

�3 − �1

�A21�

with

Ip1p2

�4� ��2,�3� =� d�1d�2
f�p1�1�f�p2�2�

�i0+ + �1 + �2 − �2��i0+ + �1 − �3�

=
2


i
� d�1D�� − �3�

f�p1�1�
�i0+ + �1 − �3�

Ip2

�2���2 − �� ,

�A22�

where we have explicitly included the cutoff function. Simi-
larly, the exchange term is

��4X��z� = − G
2̄

p4�S�z3�G
1̄

p3�S�z2�G2
p2�S�z1�G1

p1�42
p4p2�31

p3p1,

�A23�

which yields Eq. �28� with exchange integral

Ip1p2

X ��1
a�,�2

a�,�3
a�

=
1

�2
�2

− i

�2
a� − �3

a − �1
a�
� d�1� d�2f�p1�1�f�p2�2�

�� 1

i0+ + �1 − �1
a�

+
1

i0+ + �2 − �3
a�

� � 1

i0+ + �1 + �2 − �2
a�

−
1

i0+ + �1 + �2 − �1
a� − �3

a�
�A24�

with �1
a�=�1��1

+	a�−�, �2
a�=�1��1

+�2��2
+	a�−�, and �3

a

=�2��2
+	a−�. This integral can then be written as

Ip1p2

X ��1,�2,�3� =
− i

�2
�2� Ip1p2

�4� ��2,�1� − Ip1p2

�4� ��1 + �3,�1�

�2 − �3 − �1

+
Ip2p1

�4� ��2,�3� − Ip2p1

�4� ��1 + �3,�3�

�2 − �3 − �1
� .

�A25�

Both Eqs. �A21� and �A25� are written as differential quo-
tients such that for the cases in which the denominators dis-
appear 	e.g., �1=�3 in Eq. �A21�
 the integrals can be ex-
pressed as derivatives.30

It then remains to evaluate the integral of Eq. �A22� via
contour integration. The imaginary part of this integral was
discussed in Ref. 30 and reads

Im	Ip1p2

�4� ��2,�3�
 = p1p2F��2,�3� + p1F̃��3� �A26�

with

F��2,�3� = − 
�− b��2�	��− �3� − ���2 − �3�


−
1

2
���3� + ���2 − �3�f��3�� ,

F̃��3� = −



2
���3� , �A27�

and b�x�= �ex/T−1�−1 the Bose-Einstein distribution. For the
real part, we find

Re	Ip1p2

�4� ��2,�3�
 = p1p2G��2,�3� + p1G̃��3� + p1p2H��2,�3�

+ const, �A28�

where the constant cancels in both ID and IX. In the large XC
limit, we can approximate the constituent functions as

G��2,�3� = − 
2�b��2� +
1

2
�	f��32� − f��3�


+
1

2
����32�	g��3� + g�− �3�


− log� XC

2
T
�����32 + iXC� + 	��− �32 + iXC�
�� ,

�A29�

G̃��3� = −

2

2
f��3� , �A30�
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H��2,�3� = 
 Im �
k=odd

�g�− �2 + i
k�� 1

�32 − iXC + i
k

+
1

�32 + iXC + i
k
−

2

�32 + i
k
� − g�− �2 + iXC

+ i
k�� 1

�32 + i
k
+

1

�32 + 2iXC + i
k

−
2

�32 + iXC + i
k
�� , �A31�

with �ij ��i−� j and with the sum over all odd integers, k
=1,3 ,5 , . . . For numerical evaluation, this sum can simply be
truncated at a sufficiently large odd integer.

APPENDIX B: FIRST THREE CUMULANTS IN
SCATTERING APPROACH

In the two-terminal scattering formalism,47,48 the average
current and shot noise at finite temperature and bias are
given by the well-known expressions

I =
1

2

� dET�E�	fL�E� − fR�E�
 ,

S =
1

2

� dE�T�E�	fL�1 − fL� + fR�1 − fR�


+ T�E�	1 − T�E�
�fL − fR�2� ,

where T�E� is the transmission probability of the device and
fX is the Fermi function of lead X. We have set here e=�

=1 and define the correlation functions in agreement with
those of FCS. The corresponding expression for the skew-
ness at finite temperature and bias is less well known. How-
ever, from the results for the symmetrized correlator of Ref.
52 �the appropriate quantity here�, we have

S�3� = SSYM
�3� =

1

2

� dE�3Sioo�E� − Sooo�E�� �B1�

with

Sioo = �1 − T�2fL�1 − fL��1 − 2fL�

+ T�1 − T�fL�1 − fL��1 − 2fR� ,

Sooo = �1 − T�3fL�1 − fL��1 − 2fL� + T�1 − T�2aLR

+ T2�1 − T�aRL + T3fR�1 − fR��1 − 2fR� ,

and

aXY = fX�1 − fX��1 − 2fY� + fX�1 − fY��1 − 2fX�

+ fY�1 − fX��1 − 2fX� . �B2�

In the infinite bias limit, fL=1 and fR=0, we recover

SSYM
�3� =

1

2

� dE�T�E�	1 − T�E�
	1 − 2T�E�
� ,

which is the more familiar expression for skewness in the
scattering approach.

From Ref. 48 the transmission probability of the single
resonant level at energy � with partial widths �L and �R is

T�E� =
�L�R

�E − ��2 + ��L + �R�2/4
. �B3�
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